Información del artículo

Autor

Tiempo estimado de lectura

4 minutos

Compartir

Facebook Icon

Citar el artículo

Haude Medina (2022). Ángulos internos. Recuperado de Enciclopedia Iberoamericana (https://enciclopediaiberoamericana.com/angulos-internos/). Última edición: mayo 2024. Consultado el 17 de junio de 2024.
Copiar cita
¡Cita copiada a portapapeles!

Contenidos

Ángulos internos

Ángulo que se forma dentro de un polígono cuando se intersecan dos de sus lados adyacentes.

4m
·
Tabla de contenidos:

Definición

Publicidad

Un ángulo interno o interior en geometría, es el ángulo que se forma dentro de un polígono cuando se intersecan dos de sus lados adyacentes.

Los ángulos internos también se forman cuando dos rectas paralelas son cortadas por una transversal.

De esta manera se puede distinguir dos tipos de ángulos internos:

  • Ángulos internos dentro de un polígono, ya sea regular o irregular.
  • Ángulos internos que se forman dentro del área cerrada de dos rectas paralelas al ser cortadas por una transversal.

En las figuras a continuación se muestran son dos ejemplos de ángulos interiores.

Figuras con ángulos internos

En el triángulo se identifican los tres ángulos internos α, β, Φ, y en las rectas paralelas se pueden observar los ángulos φ, δ.

Propiedades

Las propiedades de los ángulos internos dependen de si pertenecen a un polígono o si se forman cuando una transversal corta a dos rectas paralelas. A continuación, se mencionan sus propiedades.

Publicidad, continua debajo

Propiedades ángulos internos de un polígono

  • El número de ángulos internos es igual al número de lados del polígono.
  • Los ángulos internos de un polígono regular tienen la misma medida.
  • La suma de los ángulos internos de cualquier polígono de “n” lados, se halla mediante la fórmula: Suma de = (n – 2) * 180°.
  • Si se conoce la suma de todos los ángulos interiores de un polígono regular, se puede obtener el ángulo interior con la fórmula: Fórmula de ángulo interior
  • En cualquier polígono el ángulo interno es suplementario al ángulo externo del mismo lado. En la figura se tiene que: Φ + τ =180°, α + δ = 180°, β + φ = 180°. polígono el ángulo interno es suplementario al ángulo externo

Utilizando las fórmulas dadas, en la siguiente tabla se muestra la relación de la suma de los ángulos internos y la medida de cada ángulo interior de varios polígonos regulares conocidos.

Polígono No. de lados Suma ángulos internos Medida cada ángulo interno
Triángulo 3 Σ∠ = (3 – 2) * 180° = 180° Ángulo interno = 180°/3 = 60°
Cuadrilátero 4 Σ∠ = (4 – 2) * 180° = 360° Ángulo interno = 360°/4 = 90°
Pentágono 5 Σ∠ = (5 – 2) * 180° = 540° Ángulo interno = 540°/5 = 108°
Hexágono 6 Σ∠ = (6 – 2) * 180° = 720° Ángulo interno = 720°/6 = 120°
Heptágono 7 Σ∠ = (7 – 2) * 180° = 900° Ángulo interno = 900°/7 = 128,57°
Octágono 8 Σ∠ = (8 – 2) * 180° = 1080° Ángulo interno = 1080°/8 = 135°

Propiedades ángulos internos entre paralelas

Se forman varios tipos de ángulos internos:

  • Los ángulos alternos internos:
    • Los ángulos alternos internos son los ángulos formados en los lados opuestos de la transversal.
    • Los ángulos alternos internos tienen la misma medida.
    • La condición anterior, permite comprobar que dos líneas dada sean paralelas.
  • Los ángulos interiores consecutivos:
    • Los ángulos interiores consecutivos se encuentran en el mismo lado de la transversal y no son adyacentes.
    • Los ángulos interiores consecutivos tienen vértices diferentes y comparten un lado en común.
    • La suma de los ángulos internos consecutivos es de 180°.

Ángulos internos entre paralelas

En la primera figura los ángulos Φ y α son alternos internos y el ángulo δ es alterno interno con φ.

La segunda figura los ángulos internos consecutivos son Φ y φ. Y el otro par de internos consecutivos son los ángulos δ y α.

Ejercicios resueltos

Ejercicio #1

Problema a resolver: hallar la medida del ángulo β del hexágono.

Ángulos de un hexágono

Ver solución

Por ser el polígono un hexágono se conoce que la suma de sus ángulos internos es:

Σ∠ = (6 – 2) * 180° = 720°

Por lo que

β + 130° + 120° + 110° +140° + 95 = 720°.

Realizando la suma de los ángulos: β + 595° = 720°.

Despejando β → β = 720° – 595°.

β = 125°. El valor del ángulo β es de 125°.

Ejercicio #2

Problema a resolver:  se conoce la medida del ∠α = 35°, hallar la medida del ángulo Φ, si se sabe que ambos son internos consecutivos entre las paralelas dadas.

Ejercicio 2 de ángulos internos

Ver solución

Por propiedad, la suma de los ángulos internos consecutivos de las paralelas r, s, es igual a 180°. Por tanto, conocida la medida del ∠α, se puede desarrollar la ecuación:

∠α + ∠Φ = 180°

Despejando ∠Φ → ∠Φ = 180° – ∠α

Se sustituye el valor del ángulo conocido para obtener:

∠Φ = 180° – 35° = 145°

La medida de los ángulos internos consecutivos es: ∠α = 35° y ∠Φ = 145°.

Ejercicio #3

Problema a resolver: En la siguiente figura se sabe que el ∠φ y ∠δ son ángulos alternos internos. Hallar la amplitud de ∠φ, si ∠δ = 115°.

Imagen ejercicio 3 ángulos internos.

Ver solución

Por propiedad de los ángulos alternos internos entre paralelas cortadas por una transversal, se conoce que la medida de ambos es la misma, por lo tanto:

∠φ =∠δ = 115°

Bibliografía:
  • Bruño, G.M. (s/f ). Elementos de la Geometría. Editorial Bouret.
  • Godino, J. D. y Ruiz, F. (2003). Geometría y su didáctica para maestros. Departamento de Didáctica de las Matemáticas. Universidad de Granada. Ministerio de Educación del Ecuador, (2016). Matemática 8° Grado. Texto del Estudiante. Quito, Ecuador.

Compartir:
Facebook Icon
Acerca del autor:

Ingeniería Informática (Universidad Rafael Belloso Chacín). Diplomatura en educación universitaria (Universidad José Gregorio Hernández). Magister en gerencia educativa (Universidad Rafael Urdaneta)

Citar este artículo:

Al citar este artículo, reconoces la autoría original, previenes plagios y brindas a tus lectores la posibilidad de acceder a las fuentes originales para obtener más información o verificar datos.

Haude Medina (2022). Ángulos internos. Recuperado de Enciclopedia Iberoamericana (https://enciclopediaiberoamericana.com/angulos-internos/). Última edición: mayo 2024. Consultado el 17 de junio de 2024.
Copiar cita
¡Cita copiada a portapapeles!
¡Enlace copiado a portapapeles!